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The next revolution in Energy 
Technology

Energy Summit 2006
Cisco Systems, San  Jose

21 July, 2006
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“Transitions to Sustainable Energy”
The world has a clear and major 

problem, with no global consensus on 
the way to proceed: how to achieve 

transitions to an adequately affordable, 
sustainable clean energy supply”

Co-chairs: Jose Goldemberg, Brazil, Secretary of 
State for the Environment of the State of São Paolo.

Steven Chu, USA
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Computer 
simulations by the 
Princeton 
Geophysical Fluid 
Dynamics Lab for 
CO2 increases above 
pre-industrial 
revolution levels:

2x CO2 : 3 – 5° C

4x CO2 :  6 - 10° C 

4 x CO2

2 x CO2

Pre-industrial: 
~275 ppm

Today: 
~380 ppm
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1 σ = 68 % confidence level

2 σ = 95.4% confidence level

3 σ = 99.7% confidence level

For a Gaussian distribution:
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Unstable 
Glaciers

Surface melt on 
Greenland ice sheet 

descending into 
moulin, a vertical shaft 
carrying the water to 

base of ice sheet.  

Source: Roger Braithwaite
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Temperature over the last 420,000 years
Intergovernmental Panel on Climate Change

We are 
here

CO2
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Energy demand vs. GDP per capita
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CO2 emissions depends on the energy source
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1) Conservation: maximize energy 
efficiency and minimize energy use, 
while insuring economic prosperity

2) Develop new sources of clean energy

A dual strategy is needed to solve 
the energy problem:



The Demand side of the
Energy Solution
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Total Electricity Use,  per capita, 1960 - 2001
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The Rosenfeld Effect

Art Rosenfeld turns his 
attention to the energy problem



Regulation stimulates technology: Refrigerator efficiency 
standards and performance. The expectation of 

efficiency standards also stimulated industry innovation
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United States Refrigerator Use (Actual) and 
Estimated Household Standby Use v. Time
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“Vampire” drains on energy



US Electricity Use of Refrigerators and 
Freezers compared to sources of electricity
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The Value of Energy Saved and Produced.  
(assuming cost of generation = $.03/kWh

and cost of use = $.085/kWh)
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Potential supply-side solutions to 
the Energy Problem

• Coal, tar sands, shale oil, …

• Fusion

• Fission

• Wind

• Solar photocells

• Bio-mass
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Potential supply-side solutions to 
the Energy Problem

• Coal, tar sands, shale oil, …

• Fusion

• Fission

• Wind

• Solar photocells

• Bio-mass
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UC Berkeley
Campus

Berkeley 
Lab 200-
acre site

Lawrence Berkeley National Laboratory
3,800 employees, ~$520 M / year budget

10 Nobel Prize winners were/are employees of LBNL, 
and at least one more “in the pipeline”

Today:

59 employees in the National Academy of Sciences,
18 in the National Academy of Engineering,

2 in the Institute of Medicine
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Helios: Lawrence Berkeley Laboratory’s 
attack on the energy problem

CellulosePlants
Cellulose-degrading

microbes
Engineered

photosynthetic microbes
and plants

Artificial
Photosynthesis

ElectricityPV Electrochemistry

Methanol
Ethanol
Hydrogen
Hydrocarbons
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Bell Laboratories

15 scientists who worked at AT&T Bell laboratories 

received Nobel Prizes.
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Shockley

Bardeen

Brittain
Materials Science

Theoretical and experimental physics
- Electronic structure of 

semiconductors
- Electronic surface states
- p-n junctions
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Helios metrics for success

• Address showstoppers as quickly as possible.

• Move on as soon as the potential solution will not scale 
properly. 

• Constantly re-access milestones and goals: Failure is
an option.

Fuels
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Is it possible to develop a new class of durable 
solar cells with high efficiency at 1/5 to 1/10th

the cost of existing technology?
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Paul Alivisatos, 
Associate Lab Director, 
Physical Sciences and 

Division Director, 
Material Sciences   

Distributed Junction Solar Cells
• Creation of electron-hole charges

• Conduction of charge carriers to electrodes

Tetrapod
nanoparticle
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Distributed Junction Solar Cells

Introduced by Heeger and coworkers in 1994. Two 
nano-scale components used to generate exciton
creation, charge separation and conduction to 
electrodes. Many losses when charges are trapped at 
dead ends within the random network.  Problems of 
charge collection are exacerbated due to the fact the 
mobilities in the organic media are low, and the holes 
move much faster than the electrons. 
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• Organized Channel Junction Solar Cells

Spatially organize the electron-hole transport pathways 
into an array of vertical columns. 

Solution phase growth of vertically aligned nanowire
arrays as electron transport media

Formation of a liquid crystal phase consisting of colloidal 
nanorods or nanotubes.

Alignment of block copolymers

Hierarchical Junction Solar Cells using organic dendrimers
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~13 B ha of land in the Earth
• 1.5 B ha for crops
• 3.5 B ha for pastureland
• 0.5 B ha are “built up”
• 7.5 B ha are forest land or “other”
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Temp/water 
limitation

Rad/water 
limitation

temp/water 
limitation
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34Source: US Dept of Agriculture
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Petroleum Use
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Greenhouse Gases
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Sunlight

CO2, H20, 

Nutrients
Biomass Chemical 

energy

Self-fertilizing,
drought and pest 

resistant

Improved 
conversion of 
cellulose into 
chemical fuel

Cellulose 40-60% Percent Dry Weight
Hemicellulose 20-40%

Lignin 10-25%

The majority of a plant is structural material
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Advantages of 
perennial species:

• higher annualized 
photosynthesis

• nutrient 
conservation
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> 1% conversion 
efficiency may be 

feasible.

• Miscanthus yields:  30 dry tons/acre

• 100 gallons of ethanol / dry ton possible ⇒ 3,000 gal/acre.

• 100 M out of 450 M acres  ⇒ ~300 B gal / year of ethanol 

• US consumption (2004)  = 141 B gal of gasoline
~ 200 B gal of ethanol / year 

• US also consumes 63 B gal diesel



40

Cellulose (40 – 60% of dry mass)
• Linear polymer of the glucose-glucose dimer
• Hydrolysis ⇒ glucose (6C sugar) ⇒ ethanol

Hemicellulose (20 -40%)
Highly branched, short chain, 5C and 6C sugars

such as xylose arabinose, galactose
Fermentation of hemicellulose in infancy
(Ethanol substituted for other hydrocarbon

e.g. butanol, octanes, etc. ?) 

Lignin (10 – 25%)
• Does not lead to simple sugar molecules
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“The large coal deposits of the Carboniferous primarily owe their
existence to two factors… the appearance of bark-bearing trees 
(and in particular the evolution of the bark fiber lignin) [and] the 
development of extensive lowland swamps and forests in North 

America and Europe. It has been hypothesized that large 
quantities of wood were buried during this period because 

animals and decomposing bacteria had not yet evolved that 
could effectively digest the new lignin.”
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From Christopher Somerville, IAC workshop, 2006
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Commercial ethanol production from cellulose

The biggest energy gains will come from improved 
fuel production from cellulose/lignin



Microbial Production of Bio-fuels and 
Synthetic Biology

Jay Keasling
Director, Physical Biosciences Division
Lawrence Berkeley National Laboratory

& 
Depts. of Chemical Engineering & Bioengineering

University of California, Berkeley



Malaria
• Caused by Plasmodium, 

a single-cell protozoan
–Transmitted by 

Anopheles mosquito

–Destroys red blood 
cells

–Plasmodium in South 
America and Southeast 
Asia is largely resistant 
to chloroquine – based 
drugs



A-CoA

AA-CoA

HMG-CoA
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OPP
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Synthetic Biology:
Production of artemisinin in bacteria Jay Keasling

Identify the 
biosynthesis 
pathways in 

A. annua



Research, Development & 
Delivery

Keasling 
Laboratory

Amyris 
Biotechnologies

Institute for
OneWorld
Health



Artemisinin costs
Artesunate

combination
treatment

Current cost of drug $2.25-2.50

Cost with new process $.21/.12 ?
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Production of artemisinin in bacteria Jay Keasling

Identify the 
biosynthesis 
pathways in 

A. annua

Can synthetic organisms be 
engineered to produce 

ethanol, butanol or more 
suitable hydrocarbon fuel?
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Matrix Polymerase Chain Reaction (PCR)
Solving the Macro-Micro Interface Problem

Steve Quake

Red: Primer Input 
(Multiplexed by N)

Blue: Template Input 
(Multiplexed by N)

Yellow: Taq Input 
(Multiplexed by N2)

N2 independent PCR reactions performed with 2N+1 inputs!
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Sunlight

CO2 H20

Nutrients

Biomass Chemical 
energy

Can we modify existing organisms (algae) or 
design new ones to directly produce energy?
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